Evaluation of Cache-based Superscalar and Cacheless Vecto
Architectures for Scienti c Computations

Leonid Oliker, Andrew Canning, Jonathan Carter, John $SBaifid Skinner
CRD/NERSC, Lawrence Berkeley National Laboratory, Begkeél A 94720

Stéphane Ethier
Princeton Plasma Physics Laboratory, Princeton Univetdftrinceton, NJ 08453

Rupak Biswas, Jahed Djomehiand Rob Van der Wijngaart
NAS Division, NASA Ames Research Center, Moffett Field, 408D

Abstract

The growing gap between sustained and peak performanceénitisc applications is a well-known
problem in high end computing. The recent development ddlfivector systems offers the potential
to bridge this gap for many computational science codes afided a substantial increase in comput-
ing capabilities. This paper examines the intranode perémice of the NEC SX-6 vector processor
and the cache-based IBM Power3/4 superscalar architechgress a number of scienti ¢ computing
areas. First, we present the performance of a microbenéhso@e that examines low-level machine
characteristics. Next, we study the behavior of the NAS IRdBenchmarks. Finally, we evaluate the
performance of several scienti c computing codes. Restid#honstrate that the SX-6 achieves high
performance on a large fraction of our applications andodigni cantly outperforms the cache-based
architectures. However, certain applications are notyeasienable to vectorization and would require
extensive algorithm and implementation reengineeringitizei the SX-6 effectively.

1 Introduction

The rapidly increasing peak performance and generalityupésscalar cache-based microprocessors long
led researchers to believe that vector architectures il promise for future large-scale computing sys-
tems. Due to their cost effectiveness, an ever-growingtifracof today's supercomputers employ com-
modity superscalar processors, arranged as systems afonteected SMP nodes. However, the growing
gap between sustained and peak performance for scientplicgtions on such platforms has become well
known in high performance computing.

The recent development of parallel vector systems offerptitential to bridge this performance gap for
a signi cant number of scienti ¢ codes, and to increase caifional power substantially. This was high-
lighted dramatically when the Japanese Earth Simulatore8ys [2] results were published [18, 19, 22].
The Earth Simulator, based on NEC SXgector technologyachieves ve times the LINPACK perfor-
mance with half the number of processors of the IBM SP-base@IAVhite, the world's fourth-most pow-
erful supercomputer [8], built usinguperscalar technologyin order to quantify what this new capability
entails for scienti c communities that rely on modeling asichulation, it is critical to evaluate these two
microarchitectural approaches in the context of demandimgputational algorithms.

Employee of Computer Sciences Corporation.
Also referred to as the Cray SX-6 due to Cray's agreement tixeh&AIEC's SX line.

SC'03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

In this paper, we compare the performance of the NEC SX-6vegrbcessor against the cache-based
IBM Power3 and Power4 architectures for several key scentimputing areas. We begin by evaluating
memory bandwidth and MPI communication speeds, using & satoobenchmarks. Next, we evaluate ve
of the well-known NAS Parallel Benchmarks (NPB) [4, 11],ngsproblem size Class B. Finally, we present
performance results for a number of numerical codes froensici computing domains, including plasma
fusion, astrophysics, uid dynamics, materials sciencagnetic fusion, and molecular dynamics. Since
most modern scienti ¢ codes are already tuned for cacheéagstems, we examine the effort required to
port these applications to the vector architecture. Wedapuserial and intranode parallel performance of
our application suite, while isolating processor and mgnhehavior. Future work will explore the behavior
of multi-node vector con gurations.

2 Architectural Speci cations

We brie y describe the salient features of the three paratehitectures examined. Table 1 presents a
summary of their intranode performance characteristicicl that the NEC SX-6 has signi cantly higher
peak performance, with a memory subsystem that featuretaata an order of magnitude higher than the
IBM Power3/4 systems.

Node | CPU/| Clock Peak Memory BW Peak MPI Latency
Type | Node | (MHz) | (G ops/s) (GB/s) Bytes/Flop (sec)

Power3| 16 375 15 0.7 0.45 8.6
Power4| 32 | 1300 5.2 2.3 0.44 3.0
SX-6 8 500 8.0 32 4.0 2.1

Table 1: Architectural speci cations of the Power3, Powerdd SX-6 nodes.

2.1 Power3

The IBM Power3 was rst introduced in 1998 as part of the RBBBeries. Each 375 MHz processor
contains two oating-point units (FPUs) that can issue atiply-add (MADD) per cycle for a peak per-
formance of 1.5 GFlops/s. The Power3 has a short pipelinalgftoree cycles, resulting in relatively low
penalty for mispredicted branches. The out-of-order &chire uses prefetching to reduce pipeline stalls
due to cache misses. The CPU has a 32KB instruction cache H28KdB 128-way set associative L1 data
cache, as well as an 8MB four-way set associative L2 cacheitgibwn private bus. Each SMP node con-
sists of 16 processors connected to main memory via a crodgliti-node con gurations are networked
via the IBM Colony switch using an omega-type topology.

The Power3 experiments reported in this paper were condiustea single Nighthawk Il node of the
208-node IBM pSeries system (named Seaborg) running APaldliocated at Lawrence Berkeley National
Laboratory.

2.2 Power4d

The pSeries 690 is the latest generation of IBM's RS/600@seEach 32-way SMP consists of 16 Power4
chips (organized as 4 MCMs), where a chip contains two 1.3 @tdzessor cores. Each core has two
FPUs capable of a fused MADD per cycle, for a peak performafice2 G ops/s. Two load-store units,

each capable of independent address generation, feeddtdotwle precision MADDers. The superscalar
out-of-order architecture can exploit instruction levargllelism through its eight execution units. Up to
eight instructions can be issued each cycle into a pipelinetsire capable of simultaneously supporting

more than 200 instructions. Advanced branch predictioilsare minimizes the effects of the relatively
long pipeline (six cycles) necessitated by the high frequetesign.

Each processor contains its own private L1 cache (64KBlogtn and 32KB data) with prefetch
hardware; however, both cores share a 1.5MB uni ed L2 ca€letain data access patterns may therefore
cause L2 cache con icts between the two processing units.dilectory for the L3 cache is located on-chip,
but the memory itself resides off-chip. The L3 is designed atand-alone 32MB cache, or to be combined
with other L3s on the same MCM to create a larger interleaesthe of up to 128MB. Multi-node Power4
con gurations are currently available employing IBM's @oly interconnect, but future large-scale systems
will use the lower latency Federation switch.

The Power4 experiments reported here were performed orgke siode of the 27-node IBM pSeries
690 system (named Cheetah) running AlX 5.1 and operated kyR@dge National Laboratory.

2.3 SX-6

The NEC SX-6 vector processor uses a dramatically diffeaeahitectural approach than conventional
cache-based systems. Vectorization exploits regulaiitieche computational structure to expedite uniform
operations on independent data sets. Vector arithmeticugisons involve identical operations on the ele-
ments of vector operands located in the vector register.yMaienti ¢ codes allow vectorization, since they
are characterized by predictable ne-grain data-paighelthat can be exploited with properly structured
program semantics and sophisticated compilers. The 500 8#4@ processor contains an 8-way replicated
vector pipe capable of issuing a MADD each cycle, for a peakop@ance of 8 G ops/s per CPU. The
processors contain 72 vector registers, each holding 258t é4ords.

For non-vectorizable instructions, the SX-6 contains a @B scalar processor with a 64KB instruc-
tion cache, a 64KB data cache, and 128 general-purposdemsgidhe 4-way superscalar unit has a peak
of 1 G ops/s and supports branch prediction, data prefet:hand out-of-order execution. Since the vector
unit of the SX-6 is signi cantly more powerful than its scalarocessor, it is critical to achieve high vector
operation ratios, either via compiler discovery or explycihrough code (re-)organization.

Unlike conventional architectures, the SX-6 vector urtkkadata caches. Instead of relying on data lo-
cality to reduce memory overhead, memory latencies areeddskoverlapping pipelined vector operations
with memory fetches. The SX-6 uses high speed SDRAM with peakiwidth of 32GB/s per CPU: enough
to feed one operand per cycle to each of the replicated pige Bach SMP contains eight processors that
share the node's memory. The nodes can be used as buildickskdblarge-scale multi-processor systems;
for instance, the Earth Simulator contains 640 SX-6 nodasyected through a single-stage crossbar.

The vector results in this paper were obtained on the singtke (8-way) SX-6 system (named Rime)
running SUPER-UX at the Arctic Region Supercomputing CefA&SC) of the University of Alaska.

3 Microbenchmarks

This section presents the performance of a microbenchmaid that measures some low-level machine
characteristics such as memory subsystem behavior andrégather hardware support using STREAM [7];
and point-to-point communication, network/memory cotiten and barrier synchronizations via PMB [5].

3.1 Memory Access Performance

First we examine the low-level memory characteristics @f three architectures in our study. Table 2
presents asymptotic unit-stride memory bandwidth behafithe triad summationa(i) = b(i)+ s (i),

using the STREAM benchmark [7]. It effectively captures geak bandwidth of the architectures, and
shows that the SX-6 achieves about 48 and 14 times the pexfmerof the Power3 and Power4, respectively,

3

| P | Power3| Power4| SX-6 | 100000
1 661 2292 | 31900 L
2| 661 | 2264 | 31830 0000
4 644 2151 | 31875 % 1000
8 568 1946 | 31467 g
16| 381 1552 | — g 100 f‘____;‘_“
32| — 1040 — £ 10 [—Power3 - T
E —— Pow er4
Table 2: Single-processor STREAM triad perfor- o | S%6
mance (in MB/s) for unit stride. § NAD D DN A DD DN A
RN A A S
Stride

Figure 1: Single-processor STREAM triad perfor-
mance (in MB/s) using regularly strided data.

on a single processor. Notice also that the SX-6 shows nblgipandwidth degradation for up to eight
tasks, while the Power3/4 drop by almost 50% for fully packedes.

Our next experiment concerns the speed of strided datasaooes single processor. Figure 1 presents
our results for the same triad summation, but using varioeiary strides. Once again, the SX-6 achieves
good bandwidth, up to two (three) orders of magnitude betien the Power4 (Power3), while showing
markedly less average variation across the range of ssiddgged. Observe that certain strides impact SX-6
memory bandwidth quite pronouncedly, by an order of mageitar more. Analysis shows that strides
containing factors of two worsen performance due to in@@d3RAM bank con icts. On the Power3/4, a
precipitous drop in data transfer rate occurs for smallissj due to loss of cache reuse. This drop is more
complex on the Power4, because of its more complicated cstalneture.

Finally, Figure 2 presents the memory bandwidth of indiesdressing through vector triad gather and
scatter operations of various data sizes on a single procdss smaller sizes, the cache-based architectures
show better data rates for indirect access to memory. Hawierdarger sizes, the SX-6 is able to utilize its
hardware gather and scatter support effectively, outpmifg the cache-based systems.

10000 10000

- AdsAMASL, A4 4, AMA4 4 ™ AAAAMAL A AaAAMA
£ 1000 L AMA 44 @ 1000 Laasdft, A
) 'AA A =) P 8 —
\E/ .’“M‘ A -wuuﬂﬂﬂﬁuum g " 000 AAAAAA
& 100 bt B 100 e oo
3 e O 5 Rt "
O ot + Power3 A 10 A + Power3
E 10 ‘AA. e Powerd 3 ' e Power4
= 4 SX-6 = 4 SX-6

S UBXEEX5EE5E23 SRBEXEXEYEET 23

Data Size (Bytes) Data Size (Bytes)

Figure 2: Single-processor STREAM triad performance (in/8)RBising irregularly strided data of various
sizes: gather (left) and scatter (right).

3.2 MPI Performance

Message passing is the most wide-spread programming garddr high-performance parallel systems.
The MPI library has become the de facto standard for messasgng. It allows both intranode and in-
ternode communications, thus obviating the need for hytmadjramming schemes for distributed-memory
systems. Although MPI increases code complexity compaitddsiiared-memory programming paradigms
such as OpenMP, its bene ts lie in improved control over datality and fewer global synchronizations.

Table 3 presents bandwidth gures obtained using the PallR$ Benchmark (PMB) suite [5], for
exchanging intranode messages of various sizes. The wsshmws the best-case scenario when only two
processors within a node communicate. Notice that the SXs&lgni cantly better performance, achieving
more than 19 (7) times the bandwidth of the Power3 (Poweot)tHe largest messages. The effects of
network/memory contention are visible when all processdtkin each SMP are involved in exchanging
messages. Once again, the SX-6 dramatically outperforen$tiwer3/4 architectures. For example, a
message containing 524288 {Pbytes, suffers 46% (68%) bandwidth degradation when fsdifurating
the Power3 (Power4), but only 7% on the SX-6.

8192 Bytes 131072 Bytes 524288 Bytes 2097152 Bytes
P | Power3| Power4] SX-6 | Power3| Power4| SX-6 | Power3| Power4| SX-6 | Power3 Power4] SX-6
2| 143 515 | 1578| 408 1760 | 6211| 508 1863 | 8266| 496 1317 | 9580
4| 135 475 |1653| 381 1684 | 6232 442 1772 | 8190| 501 1239 | 9521
8| 132 473 | 1588 343 1626 | 5981| 403 1638 | 7685| 381 1123 | 8753
16| 123 469 — 255 1474 | — 276 1300 | — 246 892 —
32| — 441 — — 868 — — 592 — — 565 —

Table 3: MPI send/receive performance (in MB/s) for varimessage sizes and processor counts.

Table 4 shows the overhead of MPI barrier synchronization ¢ec). As expected, the barrier overhead
on all three architectures increases with the number ofgmsmrs. For the fully loaded SMP test case, the
SX-6 has 3.6 (1.9) times lower barrier cost than Power3 (lPdwaowever, for the 8-processor test case,
the SX-6 performance degrades precipitously and is slightteeded by the Power4.

| P | Power3| Power4| SX-6 |

2| 171 6.7 5.0
4| 317 12.1 7.1
8| 544 19.8 | 22.0
16| 79.1 28.9 —
32 — 42.4 —

Table 4: MPI synchronization overhead (isec).

4 Scienti ¢ Kernels: NPB

The NAS Parallel Benchmarks (NPB) [4, 11] provide a good nadptound for evaluating the performance
of compact, well-understood applications. The NPB werategt at a time when vector machines were
considered no longer cost effective. Although they were mheat to be biased against any particular
architecture, the NPB were written with cache-based systemind. Here we investigate the work involved
in producing good vector versions of the published NPB thatagpropriate for our current study: CG, a
sparse-matrix conjugate-gradient algorithm marked tBgintar stride resulting from indirect addressing;

MG, a quasi-multi-grid code marked by regular non-unitdgs resulting from communications between
grids of different sizes; FT, an FFT kernel; BT, a synthetmv solver that features simple recurrences
in a different array index in three different parts of theusioin process; and LU, a synthetic ow solver
featuring recurrences in three array indices simultadgaliging the major part of the solution process. We
do not report results for the SP benchmark, which is verylainid BT. Table 5 presents MPI performance
results for these codes on the SX-6 and Power3/4 for mediobigm sizes, commonly referred to as Class
B. Performance results are reported in M ops/s per proaesto characterize vectorization behavior we
also showaverage vector lengtfAVL) and vector operation ratiqVOR). Cache effects are accounted for
by TLB misses in % per cycle (TLB) and L1 hits in % per cycle (LBl performance numbers except
M ops/s—which is reported by the benchmarks themselves—+evabtained using thepmcount tool on
the Power3/4 anftrace on the SX-6.

Although the CG code vectorizes well and exhibits fairlydorector lengths, uni-processor SX-6 per-
formance is not very good due to the cost of gather/scatsrtieg from the indirect addressing. Multi-
processor SX-6 speedup degrades as expected with theioedinctector length. Power3/4 scalability is
good, mostly because uni-processor performance is so pediodhe serious lack of data locality.

MG also vectorizes well, and SX-6 performance on up to foocessors is good. But a decreased VOR
and AVL, combined with the cost of frequent global synchrations to exchange data between small grids,
causes a sharp drop on eight processors. The mild degnaddtjfmerformance on the Power3/4 is almost
entirely due to the increasing cost of communication, abeasage is fairly constant, and TLB misses even
go down a bit due to smaller per-processor data sets.

FT did not perform well on the SX-6 in its original form, besauthe computations used a xed block
length of 16 words. But once the code was modi ed to use a bleokth equal to the size of the grid
(only three lines changed), SX-6 uni-processor perforraangproved markedly due to increased vector
length. Speedup from one to two processors is not good dueetonbe spent in a routine that does a local
data transposition to improve data locality for cache basadhines (this routine is not called in the uni-
processor run), but subsequent scalability is excellemieP3/4 scalability is fairly good overall, despite the
large communication volume, due to improved data localftthe multi-processor implementation. Note
that the Power4's absolute FT performance is signi cant§tér than its performance on CG, although the
latter exhibits fewer L1 and TLB misses. The sum of L1 and Ld ¢eported here) cache hits on the Power4
is approximately the same for CG and FT for small numbers efgssors. We conjecture that FT, with its
better overall locality, can satisfy more memory requestsifL3 (not measured) than CG.

The BT baseline MPI code performed poorly on the SX-6, bezgubroutines in inner loops inhibited
vectorization. Also, some inner loops of small xed lengtlene vectorized, leading to very short vector
lengths. Subroutine inlining and manual expansion of sioalbs lead to long vector lengths throughout
the single-processor code, and good performance. Inage#s number of processors on the SX-6 causes
reduction of vector length (artifact of the three-dimensiodomain decomposition) and a concomitant de-
terioration of the speedup. Power3 (Power4) scalabilifgirsup to 9 (16) processors, but degrades severely
on 16 (25) processors. The reason is the fairly large numbeyrhronizations per time step that are
costly on (almost) fully saturated nodes. Experiments withower3 two-node computation involving 25
processors show a remarkable recovery of the speedup.

LU fared poorly as expected on the SX-6, because data depepden the main part of the solver
prevented full vectorization, as evidenced by the low VORtférmance of the parts that do vectorize
degrades signi cantly as the number of processors incegéseause of the pencil domain decomposition in
the rst and second array dimensions. These factors do agtgtole on the Power3/4, whose performance
actually improves as the number of processors grows. Thisdause the communication overhead is rather
small, so that the improved cache usage dominates scglabibte that LU sustains the highest performance
of all NPB on the Power3/4, but it also has the highest rateL® misses on the Power3. This suggests that
the cost of a TLB miss is relatively small.

CG

Power3 Power4 SX-6
P |Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
1 54 68.0 | 0.058 111 65.6 | 0.013 470 198.6| 96.9
2 55 71.9 | 0.039 111 69.9 | 0.014 258 147.0| 96.0
4 54 73.0 | 0.027 114 71.8 | 0.015 253 147.9| 96.5
8 55 79.7 | 0.031 151 77.0 | 0.020 131 117.1) 95.0
16 48 82.5 | 0.029 177 78.6 | 0.025 — — —
32 — — — 149 85.2 | 0.020 — — —
MG
Power3 Power4 SX-6
P |Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
1] 207 | 97.4 [0.067| 407 | 87.3 | 0.029] 2207 | 160.4] 97.2
2| 213 | 975 | 0.067| 542 | 87.5 | 0.037| 2053 | 160.1| 97.1
4 193 | 97.3 |0.061| 470 | 85.6 | 0.033| 1660 | 161.7] 97.1
8 185 97.4 | 0.049 425 90.0 | 0.028 620 104.7| 95.2
16 148 97.3 | 0.045 337 87.8 | 0.023 — — —
32 — — — 292 86.1 | 0.016 — — —
FT
Power3 Power4 SX-6
P [Mops/s| L1 [TLB [Mops/s | L1 | TLB | Mops/s | AVL | VOR
1 133 91.1 | 0.204 421 52.6 | 0.086| 2021 | 256.0| 98.4
2 120 91.2 | 0.088 397 57.5 | 0.022 1346 | 255.7| 98.4
4 117 91.6 | 0.087 446 56.3 | 0.024| 1324 | 255.2| 98.4
8 112 91.6 | 0.084 379 57.1 | 0.022 1242 | 254.0| 98.4
16 95 91.3 | 0.070 314 58.4 | 0.020 — — —
32 — — — 259 60.7 | 0.016 — — —
BT
Power3 Power4 SX-6
P |[Mops/s| L1 [TLB [Mops/s | L1 | TLB | Mops/s | AVL | VOR
1 144 96.8 | 0.039 368 86.9 | 0.023| 3693 100.9| 99.2
4 127 97.1 | 0.116 208 85.6 | 0.018| 2395 51.2| 98.7
9 122 97.0 | 0.032 269 87.5 | 0.017 — — —
16 103 97.3 | 0.025 282 87.5 | 0.011 — — —
25 — — — 208 98.4 | 0.013 — — —
LU
Power3 Power4 SX-6
P |[Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
1 186 96.6 | 0.304 422 75.2 | 0.087 740 100.2| 77.7
2 247 97.1 | 0.293 595 76.4 | 0.020 656 51.8| 77.2
4 257 97.1 | 0.421 636 77.5 | 0.092 684 53.0| 77.3
8 263 97.0 | 0.235 636 78.9 | 0.009 142 29.4| 745
16 267 96.9 | 0.173 558 79.6 | 0.007 — — —
32 — — — 566 78.4 | 0.006 — — —

Table 5: Performance of the NAS Parallel Benchmarks Class B.

In sum, all NPB except LU suffer signi cant performance daggition on both architectures when a node
is (nearly) fully saturated. AVL and especially VOR are sgty correlated with performance on the SX-6,
but the occurrence of irregular stride (requiring suppbgather/scatter units) or many small messages also
have signi cant in uence. Except for CG with its irregulareamory references, there is a strong correlation
between the smaller L1 cache on the Power4 (0.25 times ttiaed?ower3) and the number of L1 misses.
Nevertheless, L1 hits and TLB misses alone are weak prediofqerformance on the Power3/4, whereas
communication volume and frequency play a signi cantlygkar role than on the SX-6. In a subsequent
study, more detailed performance indicators will be exaithat can more fully explain the observed
behavior.

5 Scienti ¢ Applications

Six applications from diverse areas in scienti c computimgre chosen to measure and compare the perfor-
mance of the SX-6 with that of the Power3 and Power4. The equdins are: TLBE, a fusion energy appli-
cation that performs simulations of high-temperaturepksCactus, an astrophysics code that solves Ein-
stein's equations; OVERFLOW-D, a CFD production code tludtes the Navier-Stokes equations around
complex aerospace con gurations; PARATEC, a materialsrem code that solves Kohn-Sham equations
to obtain electron wavefunctions; GTC, a particle-in-eglproach to solve the gyrokinetic Vlasov-Poisson
equations; and Mindy, a simpli ed molecular dynamics codat tuses the Particle Mesh Ewald algorithm.
Performance results are reported in M ops/s per processaept where the original algorithm has been
modi ed for the SX-6 (these are reported as wall-clock tim&3 was the case for the NPB, AVL and VOR
values are shown for the SX-6, and TLB and L1 values for thed?®i. All performance numbers were
obtained withhpmcount on the Power3/4 anffrace on the SX-6.

6 Plasma Fusion: TLBE

Lattice Boltzmann methods provide a mesoscopic descrigtiche transport properties of physical systems
using a linearized Boltzmann equation. They offer an eftieray to model turbulence and collisions in a
uid. The TLBE application [20] performs a 2D simulation oigh-temperature plasma using a hexagonal
lattice and the BGK collision operator. Figure 3 shows amgxa of vorticity contours in the 2D decay of
shear turbulence simulated by TLBE.

Figure 3: TLBE simulated vorticity contours in the 2D decdyslear turbulence.

8

6.1 Methodology

The TLBE simulation has three computationally demandinggonents: computation of the mean macro-
scopic variables (integration); relaxation of the macopsc variables after colliding (collision); and propa-
gation of the macroscopic variables to neighboring grichfgofstream). The rst two steps are oating-point
intensive, the third consists of data movement only. Thdlperu is ideally suited for vector architectures.
The rst two steps are completely vectorizable, since thepotation for each grid point is purely local.
The third step consists of a set of strided copy operationsaddition, distributing the grid via a 2D de-
composition easily parallelizes the method. The rst twepst require no communication, while the third
has a regular, static communication pattern in which thentaty values of the macroscopic variables are
exchanged.

6.2 Porting Details

After initial pro ling on the SX-6 using basic vectorizatiocompiler options vopt), a poor result of
280 M ops/s was achieved for a sm#&# grid using a serial version of the code. Thace tool showed
that VOR was high (95%) and that the collision step dominétedexecution time (96% of total); however,
AVL was only about 6. We found that the inner loop over the namtf directions in the hexagonal lattice
had been vectorized, but not a loop over one of the grid dimeasinvoking the most aggressive compiler
ag (-C hopt) did not help. Therefore, we rewrote the collision routinedoeating temporary vectors,
and inverted the order of two loops to ensure vectorizatiar one dimension of the grid. As a result, serial
performance improved by a factor of 7, and the parallel TLE®ESion was created by inserting the new
collision routine into the MPI version of the code.

6.3 Performance Results

Parallel TLBE performance using a production grid28#4& is presented in Table 6. The SX-6 results
show that TLBE achieves almost perfect vectorization im&epf AVL and VOR. The 2- and 4-processor
runs show similar performance as the serial version; howeweappreciable degradation is observed when
running 8 MPI tasks, which is most likely due to network/meyncontention in the SMP.

Power3 Power4 SX-6

P |[Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
70 90.5 | 0.500 250 58.2 | 0.069| 4060 | 256.0| 99.5
110 91.7 | 0.770 300 69.2 | 0.014| 4060 | 256.0| 99.5
110 91.7 | 0.750 310 71.7 | 0.013| 3920 | 256.0| 99.5
110 92.4 | 0.770 470 87.1 | 0.021| 3050 | 255.0| 99.2
16 110 92.6 | 0.730 460 88.7 | 0.019 — — —
32 — — — 440 89.3 | 0.076 — — —

AN

Table 6: Performance of TLBE on2048& grid.

For both the Power3 and Power4 architectures, the collisiatine rewritten for the SX-6 performed
somewhat better than the original. On the cache-based mes;tihe parallel TLBE showed higher M ops/s
(per CPU) compared with the serial version. This is due toube of smaller grids per processor in the
parallel case, resulting in improved cache reuse. The murglex behavior on the Power4 is due to the
competitive effects of the three-level cache structure satdration of the SMP memory bandwidth. In
summary, using all 8 CPUs on the SX-6 gives an aggregaterpaafce of 24.4 G ops/s (38% of peak),
and a speedup factor of 27.7 (6.5) over the Power3 (Poweith) minimal porting overhead.

7 Astrophysics: Cactus

One of the most challenging problems in astrophysics is timaarical solution of Einstein's equations

following from the Theory of General Relativity (GR): a sdtapupled nonlinear hyperbolic and elliptic

equations containing thousands of terms when fully expéndée Albert Einstein Institute in Potsdam,
Germany, developed the Cactus code [1, 10] to evolve thasatieqs stably in 3D on supercomputers to
simulate astrophysical phenomena with high gravitationa¢s, such as the collision of two black holes
(see Figure 4) and the gravitational waves that radiate franhevent.

Figure 4: Visualization from a recent Cactus simulationmfraspiraling merger of two black holes.

7.1 Methodology

The core of the Cactus solver uses the ADM formalism, alsavknas the 3+1 form. In GR, space and
time form a 4D space (three spatial and one temporal dimeniat can be sliced along any dimension.
For the purpose of solving Einstein's equations, the ADM/epldecomposes the solution into 3D spatial
hypersurfaces that represent different slices of spaaegailloe time dimension. In this formalism, the
equations are written as four constraint equations and diten equations. The evolution equations can
be solved using a number of different numerical methoddudtieg staggered leapfrog, McCormack, Lax-
Wendroff, and iterative Crank-Nicholson schemes. A “ldgsaction describes the time slicing between
hypersurfaces for each step in the evolution. A “shift neétis used to move the coordinate system at each
step to avoid being drawn into a singularity. The four caatrequations are used to select different lapse
functions and the related shift vectors.

For performance evaluation, we focused on a core Cactus AiNs the Fortran77-based ADM ker-
nel (BenchADM [9]), written when vector machines were mooenmon; consequently, we expect it to
vectorize well. BenchADM is computationally intensiveyatving 600 ops per grid point. The loop body
of the most numerically intensive part of the solver is lafgeveral hundred lines of code). Splitting this
loop provided little or no performance enhancement, asaggedue to little register pressure in the default
implementation.

7.2 Porting Details

BenchADM vectorized almost entirely on the SX-6 in the r¢teanpt. However, the vectorization appears
to involve only the innermost of a triply nested loop ¥, andz-directions for a 3D evolution). The result-

10

ing effective vector length for the code is directly relatecthe x-extent of the computational grid. This
dependence led to some parallelization dif culties beeail® typical block-oriented domain decomposi-
tions reduce the vector length, thereby affecting uni-pssor performance. In order to decouple parallel
ef ciency and uni-processor performance, the domain wasuigposed using Z-slices.

7.3 Performance Results

Table 7 presents performance results for BenchADM d27& grid. The mild deterioration of the perfor-
mance on the Power3/4 as the number of processors grows @isallie to the cost of communications,
with a steep drop in performance as a Power4 node gets fullyadad (32 processors). Increasing the grid
size by just one point in each dimension1®8® results in severe performance degradation, even though
TLB miss and L1 hit rates are hardly affected. Apparentlgt thegradation is attributable primarily to L2
and L3 cache line aliasing which inhibits cache reuse.

Power3 Power4 SX-6

P |Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
274 99.4 | 0.030 672 92.2 | 0.010| 3912 126.7| 99.6
236 99.4 | 0.030 582 92.6 | 0.010| 3500 126.7| 99.5
249 99.4 | 0.020 619 93.2 | 0.010 2555 126.7| 99.5
251 99.4 | 0.030 600 92.4 | 0.010 2088 126.7| 99.3
16 226 99.5 | 0.020 538 93.0 | 0.010 — — —
32 — — — 379 97.0 | 0.001 — — —

AN

Table 7: Performance of the Cactus BenchADM kernel a2& grid.

While for smaller grid sizes the SX-6 performance is mediptitel 27 grid uni-processor computation
returns an impressive 3.9 GFlops/s with a sizable AVL and &\@Dalmost 100%. The SX-6 is immune to
the effects of power-of-two aliasing because of the abseficeache memory. The vector memory subsystem
is not affected by bank con icts because most accesses iirendt stride. To date, SX-6's 49% of peak
performance is the best achieved for this benchmark on amgrtucomputer architecture. SX-6 multi-
processor performance deteriorates fairly rapidly duehéorising cost of interprocessor synchronization
(see Table 4); the AVL and VOR are hardly affected by the paizhtion, and arti cially changing the
volume of communication has negligible effect on perforoen

8 Fluid Dynamics: OVERFLOW-D

OVERFLOW-D [21] is an overset grid methodology [12] for higtelity viscous Navier-Stokes CFD
simulations around aerospace con gurations. The apjdicatan handle complex designs with multiple
geometric components, where individual body- tted gride aasily constructed about each component.
OVERFLOW-D is designed to simplify the modeling of compotseim relative motion (dynamic grid sys-
tems). At each time step, the ow equations are solved inddeetly on each grid (“block”) in a sequential
manner. Boundary values in grid overlap regions are updatéate each time step, using a Chimera inter-
polation procedure. The code uses nite differences in gpand implicit/explicit time stepping.

8.1 Methodology

The MPI version of OVERFLOW-D (in F90) is based on the multdk feature of the sequential code,
which offers natural coarse-grain parallelism. The setiaecode consists of an outer “time-loop” and an

11

inner “grid-loop”. The inter-grid boundary updates in thexial version are performed successively. To
facilitate parallel execution, grids are clustered intougs; one MPI process is then assigned to each group.
The grid-loop in the parallel implementation contains twedls, a loop over groups (“group-loop”) and a
loop over the grids within each group. The group-loop is aiet in parallel, with each group performing
its own sequential grid-loop and inter-grid updates. Thertgrid boundary updates across the groups are
achieved via MPI. Further details can be found in [13].

8.2 Porting Details

The MPI implementation of OVERFLOW-D is based on the seqakwuersion, the organization of which
was designed to exploit vector machines. The same basicgmmogtructure is used on all three machines
except that the code was compiled with @ vsafe option on the SX-6. A few minor changes were
made in some subroutines in an effort to meet speci ¢ compédquirements.

8.3 Performance Results

Our experiments involve a Navier-Stokes simulation of @orlynamics in the complex wake ow region
around hovering rotors. The grid system consisted of 41kisl@and approximately 8 million grid points.
Figure 5 presents a sectional view of the test grid and thicitgrmagnitude contours of the nal solution.

Figure 5: Sectional views of the OVERFLOW-D test grid systanad the computed vorticity magnitude
contours.

Table 8 shows execution times per time step (averaged ovstep8) on the Power3/4 and SX-6. The
current MPI implementation of OVERFLOW-D does not allow+pnocessor runs. Results demonstrate that
the SX-6 outperforms the cache-based machines; in factutnéme for 8 processors on the SX-6 is less
than three-fourths the 32-processor Power4 number. Siitglab similar for both the Power4 and SX-6
architectures, with computational ef ciency decreasing d larger number of MPI tasks primarily due to
load imbalance. It is interesting to note that Power3 sditlabxceeds that of the Power4. On the SX-6, the
relatively small AVL and limited VOR explain why the code a&bes a maximum of only 7.8 G ops/s on
8 processors. Reorganizing OVERFLOW-D would achieve higketor performance; however, extensive
effort would be required to modify this production code.

12

Power3 Power4 SX-6

P sec | L1 | TLB sec | L1 | TLB sec | AVL | VOR
46.7 | 93.3 | 0.245| 17.1 | 84.4 | 0.014, 55 | 87.2| 80.2
266 | 954 | 0.233| 94| 875 | 0.010| 2.8 | 84.3| 76.0
13.2 | 96.6 | 0.187| 56| 90.4 | 0.008| 1.6 | 79.0| 69.1
16| 80| 98.2 | 0.143| 3.2 | 92.2 | 0.005| — — —
32| — — — 22| 934 | 0.003| — — —

A~ IN

Table 8: Performance of OVERFLOW-D on a 8 million-grid pgomoblem.

9 Materials Science: PARATEC

PARATEC (PARAllel Total Energy Code) [6] performs rst-mitiples quantum mechanical total energy cal-
culations using pseudopotentials and a plane wave basi3setapproach is based on Density Functional
Theory (DFT) that has become the standard technique in ialgtecience to calculate accurately the struc-
tural and electronic properties of new materials with a quiantum mechanical treatment of the electrons.
Codes performing DFT calculations are among the largesturoers of computer cycles in centers around
the world, with the plane-wave pseudopotential approaatgldee most commonly used. Both experimental
and theory groups use these types of codes to study prapetibh as strength, cohesion, growth, catalysis,
magnetic, optical, and transport for materials like nanms$tires, complex surfaces, doped semiconductors,
and others. Figure 6 shows the induced current and chargétylencrystalized glycine, calculated using
PARATEC. These simulations were used to better understacléar magnetic resonance experiments [23].

Figure 6: Visualization of induced current (white arrowsgdaharge density (colored plane and grey sur-
face) in crystalized glycine, calculated using PARATEC][23

9.1 Methodology

PARATEC uses an all-band conjugate gradient (CG) approasblve the Kohn-Sham equations of DFT
to obtain the wavefunctions of the electrons. A part of tHewdations is carried out in real space and the
remainder in Fourier space using specialized parallel 3DsAB transform the wavefunctions. The code
spends most of its time (over 80% for a large system) in veadpplied BLAS3 and 1D FFTs on which the
3D FFTs are built. For this reason, PARATEC generally olstaimigh percentage of peak performance on

13

different platforms. The code exploits ne-grained paghfm by dividing the plane wave components for
each electron among the different processors. For a revithisoapproach with applications, see [14, 17].

9.2 Porting Details

PARATEC, an MPI code designed primarily for massively gataystems, also runs on serial machines.
Since much of the computation involves vendor supplied FRIBLASS, an ef cient vector implemen-
tation of the code requires these libraries to vectorizd. Ww&hile this is true for the BLAS3 routines on
the SX-6, the standard FFTs (e.gFFT) run at a low percentage of peak. It is thus necessary to @se th
simultaneous 1D FFTs (e.ZFFTS) to obtain good vectorization. A small amount of code rawgitwas
required to convert the 3D FFT routines to simultaneous (tipie”) 1D FFT calls.

9.3 Performance Results

The results in Table 9 show scaling tests of a 250 Si-atomdygdiem for a standard LDA run of PARATEC
with a 25 Ry cut-off using norm-conserving pseudopotestialhe simulations are for three CG steps of
the iterative eigensolver, and include the set-up and I&psshecessary to execute the code. A typical
calculation using the code would require 20 to 60 CG stepsiwearge the charge density.

Power3 Power4 SX-6

P |Mops/s| L1 | TLB |[Mops/s| L1 | TLB | Mops/s | AVL | VOR
915 98.3 | 0.166| 2290 95.6 | 0.106 5090 113.0| 98.0
915 98.3 | 0.168| 2250 95.5 | 0.104| 4980 112.0| 98.0
920 98.3 | 0.173| 2210 96.6 | 0.079| 4700 112.0| 98.0
911 98.3 | 0.180| 2085 95.9 | 0.024| 4220 112.0| 98.0
16 840 98.4 | 0.182 1572 96.1 | 0.090 — — —
32 — — — 1327 96.7 | 0.064 — — —

|~ N~

Table 9: Performance of PARATEC on a 250 Si-atom bulk system.

Results show that PARATEC vectorizes well and achieves 6#fpeak on one processor of the SX-
6. The AVL is approximately half the vector register lengtut with a high fraction of VOR. This is
because most of the time is spent in 3D FFTs and BLAS3. Theihossalability to 8 processors (53% of
peak) are due primarily to memory contention and initialesdt-up (including 1/0) that do not scale well.
Performance increases with larger problem sizes and morst€gs: for example, running 432 Si-atom
systems for 20 CG steps achieved 73% of peak on one processotr.

PARATEC runs ef ciently on the Power3; the FFT and BLAS3 riaes are highly optimized for this
architecture. The code ran at 61% of peak on a single procasd@t 56% on 16 processors. Larger physical
systems, such as the one with 432 Si-atoms, ran at 1.02 G ¢f8P%6 of peak) on 16 processors. On the
Power4, PARATEC sustains a much lower fraction of peak (44%ree processor) due to its relatively poor
ratio of memory bandwidth to peak performance. NonethetesPower4 32-processor SMP node achieves
high total performance, exceeding that of the 8-proces¥e8 8ode. The L1 hit rate is primarily determined
by the serial FFT and BLASS libraries; hence it does not vancimwith processor count. We conclude
that, due to the high computational intensity and use ofwpgd numerical libraries, these types of codes
execute ef ciently on both scalar and vector machines, auittthe need for signi cant code restructuring.

14

10 Magnetic Fusion: GTC

The goal of magnetic fusion is the construction and opematioa burning plasma power plant producing
clean energy. The performance of such a device is deternbynéte rate at which the energy is transported
out of the hot core to the colder edge of the plasma. The Gyetiki Toroidal Code (GTC) [16] was devel-
oped to study the dominant mechanism for this transportasfitial energy, namely plasma microturbulence.
Plasma turbulence is best simulated by particle codes, ichndil the nonlinearities are naturally included.
Figure 7 presents a visualization of electrostatic padéniictuations in a global nonlinear gyrokinetic sim-
ulation of microturbulence in magnetically con ned plasna

Figure 7: Electrostatic potential uctuations of micrdiutence in magnetically con ned plasmas using
GTC.

10.1 Methodology

GTC solves the gyroaveraged Vlasov-Poisson (gyrokineystem of equations [15] using the particle-
in-cell (PIC) approach. Instead of interacting with eacheot the simulated particles interact with a self-
consistent electrostatic or electromagnetic eld desatibn a grid. Numerically, the PIC method scales as
N, instead ofN 2 as in the case of direct binary interactions. Also, the éqoatof motion for the particles
are simple ODEs (rather than nonlinear PDES), and can bedelsily (e.g. using Runge-Kutta). The main
tasks at each time step are: deposit the charge of eachipattithe nearest grid points (scatter); solve the
Poisson equation to get the potential at each grid pointutate the force acting on each particle from the
potential at the nearest grid points (gather); move thdgbestby solving the equations of motion; nd the
particles that have moved outside their local domain andateghem accordingly.

The parallel version of GTC performs well on massive sumgascsystems, since the Poisson equation
is solved as a local operation. The key performance bottleiethe scatter operation, a loop over the
array containing the position of each particle. Based onriacies position, we nd the nearest grid points
surrounding it and assign each of them a fraction of its anhargportional to the separation distance. These
charge fractions are then accumulated in another arraysddiéer algorithm in GTC is complicated by the
fact that these are fast gyrating particles, where motiaeseribed by charged rings being tracked by their
guiding center (the center of the circular motion).

10.2 Porting Details

GTC's scatter phase presented some challenges when pibrticgde to the SX-6 architecture. It is dif cult
to implement ef ciently due to its non-contiguous writesiteemory. The particle array is accessed sequen-

15

tially, but its entries correspond to random locations ia simulation space. As a result, the grid array
accumulating the charges is accessed in random fashiariimgsn poor cache performance. This problem
is exacerbated on vector architectures, since many pegtidposit charges at the same grid point, causing
a classic memory dependence problem and preventing veation. We avoid these memory con icts by
using temporary arrays of vector length (256 words) to aedata the charges. Once the loop is completed,
the information in the temporary array is merged with the charge data; however, this increases memory
traf c and reduces the op/byte ratio.

Another source of performance degradation was a short loopiocated inside two large particle loops
that the SX-6 compiler could not vectorize. This problem walsed by inserting a vectorization directive,
fusing the inner and outer loops. Finally, I/O within the mkiop had to be removed to allow vectorization.

10.3 Performance Results

Table 10 shows GTC performance results for a simulation cming of 4 million particles and 1,187,392
grid points over 200 time steps. The geometry is a torus destby the con guration of the magnetic eld.
On a single processor, the Power3 achieves 10% of peak, thkilrower4 performance represents only 5%
of its peak. The SX-6 single-processor experiment runs &tV @ps/s, or only 9% of its theoretical peak.
This poor SX-6 performance is unexpected, considering ¢tetively high AVL and VOR values. We
believe this is because the scalar units need to computediwes for the scatter/gather of the underlying
unstructured grid. However, in terms of raw performance SX-6 still outperforms the Power3/4 by factors
of 4.6 and 2.5, respectively.

Power3 Power4 SX-6

P [Mops/s| L1 [TLB [Mops/s | L1 | TLB | Mops/s | AVL | VOR
153 95.1 | 0.130 277 89.4 | 0.015 701 186.8| 98.0
155 95.1 | 0.102 294 89.8 | 0.009 653 184.8| 98.0
163 96.0 | 0.084 310 91.2 | 0.007 548 181.5| 97.9
167 96.6 | 0.052 326 92.2 | 0.007 391 175.4| 97.7
16 155 97.3 | 0.025 240 92.8 | 0.006 — — —
32 — — — 275 92.7 | 0.006 — — —

AN

Table 10: Performance of GTC on a 4-million particle simiolat

Parallel results demonstrate that scaling on the SX-6 isieatly as good as on the Power3/4. In fact,
both the Power3 and Power4 initially (through= 8) show superlinear speedup, a common characteristic
of cache-based machines. This is explained by the higheitldths and lower TLB misses with increasing
processor count. Superlinear scaling for a xed problenes s&nnot be maintained past a certain number of
processors since all the data ultimately ts in cache whike¢dommunication-to-computation ratio continues
to increase. Limited scaling on the SX-6 is probably due &1tb decomposition which reduces the length
of the biggest vector loops as the number of processorsagese however, this is not the nal word. More
work is being done on GTC to improve its scalability and ety on vector architectures.

11 Molecular Dynamics: Mindy

Mindy is a simpli ed serial molecular dynamics (MD) C++ cqdderived from the parallel MD program
called NAMD [3]. The energetics, time integration, and lerfnats are identical to those used by NAMD.

16

11.1 Methodology

Mindy's core is the calculation of forces betwelnatoms via the Particle Mesh Ewald (PME) algorithm.
Its O(N 2) complexity is reduced t®(N logN) by dividing the problem into boxes, and then computing
electrostatic interaction in aggregate by consideringgmaoring boxes. Neighbor lists and a variety of
cutoffs are used to decrease the required number of forceutamions.

11.2 Porting Details

Modern MD codes such as Mindy present special challengesefiorization, since many optimization and
scaling methodologies are at odds with the ow of data slgtdibr vector architectures. The reduction of
oating point work from N2 to N logN is accomplished at the cost of increased branch complerity a
nonuniform data access. These techniques have a delstafi@et on vectorization; two strategies were
therefore adopted to optimize Mindy on the SX-6. The rsteamly decreased the number of conditions
and exclusions in the inner loops, resulting in more contmnaverall, but less inner-loop branching. We
refer to this strategy adQEXCL

The second approach was to divide the electrostatic corgutato two steps. First, the neighbor lists
and distances are checked for exclusions, and a tempaosaof Inter-atom forces to be computed is gener-
ated. The force computations are then performed on thislgsvectorizable loop. Extra memory is required
for the temporaries and, as a result, the op/byte ratio ikioed. This scheme is label8&JILD _TEMP

Mindy uses C++ objects extensively, hindering the compiteidentify data-parallel code segments.
Aggregate datatypes call member functions in the force etatipn, which impede vectorization. Com-
piler directives were used to specify that certain codei@egtcontain no dependencies, allowing partial
vectorization of those regions.

11.3 Performance Results

The case studied here is the apolipoprotein A-I molecule Esgure 8, a 92224-atom system important in
cardiac blood chemistry that has been adopted as a benclfondakge-scale MD simulations on biological
systems.

Figure 8: The apolipoprotein A-I molecule, a 92224-atomeayssimulated by Mindy.

17

Table 11 presents performance results of the serial Minglyrdhm. Neither of the two SX-6 optimiza-
tion strategies achieves high performance. N@EXCLapproach results in a very small VOR, meaning
that almost all the computations are performed on the scalitr The BUILD _TEMPstrategy (also used
on the Power3/4) increases VOR, but incurs the overheadccdased memory traf ¢ for storing temporary
arrays. In general, this class of applications is at odds véttorization due to the irregularly structured na-
ture of the codes. The SX-6 achieves only 165 M ops/s, or 2%ea#k, slightly outperforming the Power3
and trailing the Power4 by about a factor of two in run timefeEtively utilizing the SX-6 would likely
require extensive reengineering of both the algorithm &edbject-oriented code.

Power3 Power4 SX-6: NQEXCL SX-6: BUILD_TEMP
sec| L1 [TLB | sec| L1 | TLB | sec | AVL | VOR| sec| AVL | VOR

| 15.7] 99.8 [0.010] 7.8 | 98.8 [0.001| 19.7] 78.0| 0.03 | 16.1 | 134.0] 34.8 |

Table 11: Serial performance of Mindy on a 92224-atom sysiéth two different SX-6 optimization
approaches.

12 Summary and Conclusions

This paper presented the performance of the NEC SX-6 vemboepsor and compared it against the cache-
based IBM Power3/4 superscalar architectures, acrossearafgje of scienti c computations. Experiments
with a set of microbenchmarks demonstrated that for lovellpyvogram characteristics, the specialized SX-
6 vector hardware signi cantly outperforms the commodigsed superscalar designs of the Power3 and
Power4.

Next we examined the NAS Parallel Benchmarks, a well-undedsset of kernels representing key
areas in scienti c computations. These compact codes alious to perform the three main variations
of vectorization tuning: compiler ags, compiler direatis, and actual code modi cations. The resulting
optimized codes enabled us to identify classes of apptieatboth at odds with and well suited for vector
architectures, with performance ranging from 5.9% to 46%sesdk on a single SX-6 processor, and from
1.6% to 16% on a fully saturated node of eight processorsil@ipercentages of peak performance were
achieved on eight processors of the Power3 and Power4ughhihe top performing codes on vector and
cache systems were not the same. Absence of data depersdaribie main loops and long vector lengths in
FT produced the best results on the SX-6, whereas goodtipealdl small communication overhead made
LU the best performing code on the Power systems.

Several applications from key scienti c computing domaimere also evaluated; however, extensive
vector optimizations have not been performed at this tinieceSmost modern scienti ¢ codes are designed
for (super)scalar systems, we simply examined the effopired to port these applications to the vector
architecture. Table 12 summarizes the overall performasmeed by SX-6 speedup against the Power4.
Results show that the SX-6 achieves high sustained perfarenéelative to theoretical peak) for a large
fraction of our application suite and, in many cases, sigamntly outperforms the scalar architectures.

The Cactus-ADM kernel vectorized almost entirely on the @) the rst attempt. The rest of our
applications required the insertion of compiler directivad/or minor code modi cations to improve the
two critical components of effective vectorization: lorgctor length and high vector operation ratio. Vector
optimization strategies included loop fusion (and loopdeang) to improve vector length; introduction of
temporary variables to break loop dependencies (both nebt@mpiler imagined); reduction of conditional
branches; and alternative algorithmic approaches. Fdicagipns such as TLBE, minor code changes were
suf cient to achieve good vector performance and a high getege of theoretical peak, especially for the
multi-processor computations. For OVERFLOW-D, we obtdifar performance on both the cache-based
and vector machines using the same basic code structure AHARrepresented a class of applications

18

Application Scienti c Lines | Power3| Power4| SX-6 SX-6 Speedup vs.
Name Discipline of Code| %Pk | %Pk | %Pk| P | Power3| Power4
TLBE Plasma Fusion 1,500 7.3 90| 38.1| 8 27.8 6.5
Cactus-ADM Astrophysics 1,200 16.8 115| 26.1| 8 8.3 3.5
OVERFLOW-D | Fluid Dynamics 100,000 7.8 53| 12.2| 8 8.2 35
PARATEC Materials Science 50,000 60.7 40.1 | 52.8| 8 4.6 2.0
GTC Magnetic Fusion 5,000 11.1 6.3 49 8 2.3 1.2
Mindy Molecular Dynamics 11,900 6.3 4.7 21| 1 1.0 0.5

Table 12: Summary overview of application suite performeanc

relying heavily on highly optimized BLAS3 libraries. Forebe types of codes, all three architectures
performed very well due to the regularly structured, corapahally intensive nature of the algorithm. On
a single SX-6 processor, PARATEC achieved 64% of peak, WHiBE and Cactus-ADM were at 50%;
however, TLBE showed a factor of 58.0 (16.2) performanceravgment over the Power3 (Power4).

Finally, we presented two applications with poor vectorfgenance: GTC and Mindy. They feature
indirect addressing, many conditional branches, and |l@vgetl data-dependencies, making high vector
performance challenging. This was especially true for Minghose use of C++ objects made it dif cult
for the compiler to identify data-parallel loops. Effeeiy utilizing the SX-6 would likely require extensive
reengineering of both the algorithm and the implementdionhese applications.

Acknowledgements

The authors would like to gratefully thank the Arctic RegBapercomputing Center for access to the NEC
SX-6, the Center for Computational Sciences at ORNL for s&te the IBM p690, and the National En-
ergy Research Scienti c Computing Center at LBNL for accesthe IBM SP. All authors from LBNL
were supported by Director, Of ce of Computational and Tealogy Research, Division of Mathemati-
cal, Information, and Computational Sciences of the U.Sddenent of Energy under contract number
DE-AC03-76SF00098. The Computer Sciences Corporationcymgs were supported by NASA Ames
Research Center under contract number DTTS59-99-D-0863812D with AMTI/CSC.

References

[1] Cactus Code Server. http://www.cactuscode.org.
[2] Earth Simulator Center. http://www.es.jamstec.go.jp

[3] Mindy: A “minimal’ molecular dynamics program.
http://ww.ks.uiuc.edu/Development/MDTools/mindy.

[4] NAS Parallel Benchmarks. http://www.nas.nasa.goftiéare/NPB.
[5] Pallas MPI Benchmarks. http://www.pallas.com/e/prcid/pmb.
[6] PARAIllel Total Energy Code. http://www.nersc.gov/gcts/paratec.

[7] STREAM: Sustainable memory bandwidth in high perform@computers.
http://www.cs.virginia.edu/stream.

19

[8] Top500 Supercomputer Sites. http://www.top500.0rg.

[9] A. Abrahams, D. Bernstein, D. Hobill, E. Seidel, and L. &m Numerically generated black hole
spacetimes: interaction with gravitational waveélys. Rev. D45:3544-3558, 1992.

[10] G. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seid&l Benger, H.-C. Hege, A. Merzky,
J. Mass0, and J. Shalf. Solving Einstein's equations oemgmputerslEEE Computer32(12):52—
58, 1999.

[11] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. CarterDagum, R. Fatoohi, S. Fineberg, P. Freder-
ickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatahmnian, and S. Weeratunga. The NAS Parallel
Benchmarks. Technical Report RNR-94-007, NASA Ames Rese@enter, 1994.

[12] P.G. Buning, D.C. Jespersen, T.H. Pulliam, W.M. ChaR, 3lotnick, S.E. Krist, and K.J. Renze.
Over ow user's manual, version 1.8g. Technical report, MAlSangley Research Center, 1999.

[13] M.J. Djomheri and R. Biswas. Performance enhancentestiegies for multi-block overset grid CFD
applications.Parallel Computingto appear.

[14] G. Galli and A. Pasquarelld=irst-Principles Molecular Dynamicpages 261-313. Computer Simu-
lation in Chemical Physics. Kluwer, 1993.

[15] W.W. Lee. Gyrokinetic particle simulation moddl. Comp. Phys.72:243-262, 1987.

[16] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scalofgturbulent transport in magnetically
con ned plasmasPhys. Rev. Le{t88:195004, 2002.

[17] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and JIdannopoulos. lIterative minimization tech-
niques for ab initio total-energy calculations: Molecullgnamics and conjugate gradieniev. Mod.
Phys, 64:1045-1098, 1993.

[18] H. Sakagami, H. Murai, Y. Seo, and M. Yokokawa. 14.9 TR®three-dimensional uid simulation
for fusion science with HPF on the Earth SimulatorPimc. SC2002CD-ROM, 2002.

[19] S. Shingu, H. Takahara, H. Fuchigami, M. Yamada, Y. Bs\. Ohfuchi, Y. Sasaki, K. Kobayashi,
T. Hagiwara, S. Habata, M. Yokokawa, H. Itoh, and K. Otsuka26358 T ops global atmospheric
simulation with the spectral transform method on the Eanthuator. InProc. SC2002CD-ROM,
2002.

[20] G. Vahala, J. Carter, D. Wah, L. Vahala, and P. Pavérallelization and MPI performance of Thermal
Lattice Boltzmann codes for uid turbulencdParallel Computational Fluid Dynamics '99. Elsevier,
2000.

[21] A.M. Wissink and R. Meakin. Computational uid dynamsiavith adaptive overset grids on paral-
lel and distributed computer platforms. Rroc. Intl. Conf. on Parallel and Distributed Processing
Techniques and Applicationpages 1628—-1634, 1998.

[22] M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Katae 16.4-T ops Direct Numerical Simu-
lation of turbulence by Fourier spectral method on the E&ithulator. InProc. SC2002CD-ROM,
2002.

[23] Y. Yoon, B.G. Pfrommer, S.G. Louie, and A. Canning. NMRemical shifts in amino acids: effects
of environments, electric eld and amine group rotatiéthys. Rev. Bsubmitted.

20

